Skip to main content

QoE-aware inter-stream synchronization in open N-screens cloud

A recent paper by Dr Mu Mu:


QoE-aware inter-stream synchronization in open N-screens cloud

Mu, M.Simpson, S.Stokking, H. and Race, N.
Consumer Communications and Networking (CCNC), 2016 13th Annual IEEE. Las Vegas: IEEE. 2331-9860.

Abstract
The growing popularity and increasing performance of mobile devices is transforming the way in which media can be consumed, from single device playback to orchestrated multi-stream experiences across multiple devices. One of the biggest challenges in realizing such immersive media experience is the dynamic management of synchronicity between associated media streams. This is further complicated by the faceted aspects of user perception and heterogeneity of user devices and networks. This paper introduces a QoE-aware open inter-stream media synchronization framework (IMSync). IMSync employs efficient monitoring and control mechanisms, as well as a bespoke QoE impact model derived from subjective user experiments. Given a current lag, IMSync's aim is to use the impact model to determine a good catch-up strategy that minimizes detrimental impact on QoE. The impact model balances the accumulative impact of re-synchronization processes and the degree of non-synchronicity to ensure the QoE. Experimental results verify the run-time performance of the framework as a foundation for immersive media experience in open N-Screens cloud.



Mu, M.Simpson, S.Stokking, H. and Race, N. (2016) QoE-aware inter-stream synchronization in open N-screens cloud. In:Consumer Communications and Networking (CCNC), 2016 13th Annual IEEE. Las Vegas: IEEE. 2331-9860. (In Press)



If you'd like to find out more about Computing at the University of Northampton go to: www.computing.northampton.ac.uk. All views and opinions are the author's and do not necessarily reflected those of any organisation they are associated with

Popular posts from this blog

Experiments in teaching Neural Networks

Excel Based







Scratch-based
More details available at https://computingnorthampton.blogspot.co.uk/2016/11/miniproject-using-scratch-to-build-and.html including links to the code.


All views and opinions are the author's and do not necessarily reflected those of any organisation they are associated with. Twitter: @scottturneruon

Social Analysis of Publications

The Computing staff's network of co-authors, at the University of Northampton, based on the University's  research repository NECTAR - http://nectar.northampton.ac.uk/view/divisions/SSTCT.html on 12th November 2016. The data goes back to 2010.




The data was analysed using the software VOSviewer - http://www.vosviewer.com/ free software for visualising networks. Differences in colours represents, the clusters of publications with those authors picked out by the software. The relative size of the circles is the relative number of publications listed; so for the two biggest circles/hubs it relates to 55 and 34 publications in this time period. Some relatively new authors, to the University but not to research, explains some of the 'islands' and the number of publications within it - it only reflects publications whilst at the University of Northampton.

To dig a little deeper, going to  look at the two biggest 'hubs' through their NECTAR records, so potentially going …

Computer lecturer’s research helps improve the next generation of technology

Taken from: http://www.northampton.ac.uk/news/computer-lecturers-research-helps-improve-the-next-generation-of-technology/ A computing lecturer at the University of Northampton, who is researching into how the efficiency of our everyday devices, such as mobile phones, can be improved, has been awarded the best paper at two recent conferences. Dr Michael Opoku Agyeman has written several journal papers focusing on how the next generation of technology can meet the ever increasing demands from consumers. He was invited to present his work at the 19th Euromicro Conference on Digital System Design in Cyprus and the Institute of Electrical and Electronics Engineers’ 14th International Conference in Paris. Part of his research concentrates on whether several processing elements can be incorporated on a single chip, known as System-On-Chip, to improve the efficiency and speed of the computing systems that we use every day, from mobile phones to video-game consoles and even medical equipment…