Skip to main content

SDQ: Software Defined Networking experimentation framework

Fawcett, L.Mu, M.Broadbent, M.Hart, N. and Race, N. (2016) SDQ: enabling rapid QoE experimentation using Software Defined Networking. In: IFIP/IEEE International Symposium on Integrated Network Management. New York: IEEE. (Accepted)

The emerging network paradigm of Software Defined Networking (SDN) has been increasingly adopted to improve the Quality of Experiences (QoE) across multiple HTTP adaptive streaming (HAS) instances. However, there is currently a gap between research and reality in this field. QoE models, which offer user-level context to network management processes, are often tested in a simulation environment. Such environments do not consider the effects that network protocols, client programs, and other real world factors may have on the outcomes. Ultimately, this can lead to models not functioning as expected in real networks. On the other hand, setting up an experiment that reflects reality is a time consuming process requiring expert knowledge. This paper shares designs and guidelines of an SDN experimentation framework (SDQ), which offers rapid evaluation of QoE models using real network infrastructures.

To be presented at:
15th International Federation for Information Processing/Institute of Electrical and Electronics Engineers (IFIP/IEEE) International Symposium on Integrated Network Management (IM2017)
Lisbon, Portugal
08-12 May 2017

All views and opinions are the author's and do not necessarily reflected those of any organisation they are associated with. Twitter: @scottturneruon

Popular posts from this blog

Experiments in teaching Neural Networks

Excel Based

More details available at including links to the code.

All views and opinions are the author's and do not necessarily reflected those of any organisation they are associated with. Twitter: @scottturneruon

Social Analysis of Publications

The Computing staff's network of co-authors, at the University of Northampton, based on the University's  research repository NECTAR - on 12th November 2016. The data goes back to 2010.

The data was analysed using the software VOSviewer - free software for visualising networks. Differences in colours represents, the clusters of publications with those authors picked out by the software. The relative size of the circles is the relative number of publications listed; so for the two biggest circles/hubs it relates to 55 and 34 publications in this time period. Some relatively new authors, to the University but not to research, explains some of the 'islands' and the number of publications within it - it only reflects publications whilst at the University of Northampton.

To dig a little deeper, going to  look at the two biggest 'hubs' through their NECTAR records, so potentially going …

Computer lecturer’s research helps improve the next generation of technology

Taken from: A computing lecturer at the University of Northampton, who is researching into how the efficiency of our everyday devices, such as mobile phones, can be improved, has been awarded the best paper at two recent conferences. Dr Michael Opoku Agyeman has written several journal papers focusing on how the next generation of technology can meet the ever increasing demands from consumers. He was invited to present his work at the 19th Euromicro Conference on Digital System Design in Cyprus and the Institute of Electrical and Electronics Engineers’ 14th International Conference in Paris. Part of his research concentrates on whether several processing elements can be incorporated on a single chip, known as System-On-Chip, to improve the efficiency and speed of the computing systems that we use every day, from mobile phones to video-game consoles and even medical equipment…